Introduction:
In recent years, there has been increasing interest in the potential for hydropower development in coastal areas, particularly in the Pacific Northwest. The development of hydropower facilities in such areas has the potential to provide a reliable source of renewable energy, while also supporting the local economy. However, the construction of such facilities can have significant impacts on the surrounding ecosystem, including the movement of aquatic species. This study aims to investigate the effects of a proposed hydropower facility on the movement of Chinook salmon, a species that is critically important to the local ecosystem.

Objectives:
The primary objectives of this study are:
1. To monitor the movement of Chinook salmon through the proposed hydroelectric facility.
2. To assess the potential impacts of the facility on the movement of salmon.
3. To develop recommendations for the design and operation of the facility to minimize its impact on salmon.

Methods:
The study will involve the use of acoustic tag technology to track the movement of salmon through the proposed facility. The tags will be attached to individual salmon as they enter the system, and their movements will be monitored using a network of receiving stations. The data collected will be analyzed to determine the impact of the facility on salmon movement.

Data/Results:
The results of the study will be presented in a detailed report, which will include a summary of the methods used, an analysis of the data collected, and recommendations for the future study of similar issues.

Conclusions:
The conclusions of the study will be based on the data collected and will be presented in a final report. The study will provide valuable information for the design and operation of future hydropower facilities in coastal areas, and will contribute to the understanding of the impacts of such facilities on aquatic ecosystems.

Acknowledgments:
This research is supported by funding from the U.S. Environmental Protection Agency and the Pacific Northwest National Laboratory. The authors would like to thank all the individuals and organizations who have provided support for this project.